MMP Learning Seminar
Week 90 :

- log caronnel Hershaldso of andi- plencranoned y yidem:
- Complemerls neas max- kilt cenles.

Log canonical thresholds of antipluricanonical systems:
X $F_{\text {and }}$ kit, $-K_{x}$ ample.

$$
0 \leqslant \Gamma \sim-m K_{x} . \quad \Gamma / m \sim Q-K_{x}
$$

$$
\operatorname{lct}(X ; \Gamma / m)
$$

can there converge to zero?
Theorem 1.1 (BAB in dimension d): Let d be a positive integer. and $\varepsilon>0$. Then the projective vavedius X such that

- $-(K x+B)$ is net \& big, $\quad\left\{\begin{array}{l}\text { Fans varieties with bounded sing } \\ \text { form bounded families }\end{array}\right\}$
form a bounded family.
$\left\{\begin{array}{l}\text { Theorem } 1.6 \text { (lat of anti-pluricanonical systems): } \\ d \& \varepsilon \text { as above. } A:=-(k x+B) . \text { There exists } t=t(d, \varepsilon)>0\end{array}\right\}$
This
such that $\quad \mid c t\left(X, B,|A|_{\mathbb{R}}\right) \geqslant t$. holds indira
$\inf \left\{\operatorname{lct}(X, B, D) \mid 0 \leqslant D \sim_{\mathbb{R}} A\right\}$ prousted
(Theorem 1.7 (divisor computing the $\mid c t$):
(X, B) projective kit $A:=-\left(K_{x}+B\right)$ nee \& by g.
Assume $\operatorname{lct}(X, B,|A| \mathbb{R}) \leqslant 1$. Then, there exists $0 \leqslant D \sim_{\mathbb{R}} A$ such that $\quad \operatorname{lct}(X, B,|A| \mathbb{R})=\operatorname{lct}(X, B ; D)$.
(Theorem 1.8. (lat on systems with bounded degree):
Let d, r be natural numbers, $\varepsilon \geq 0$. Then, there exists $t:=t(d, r, \varepsilon)$. satisfying the following. Assume:
- (X, B) projective $\varepsilon-l c$ dimension $d,\} \rightarrow$ banded famiher
- A very ample with $A^{d} \leqslant r$.
- $A-B$ is psecuto-effective, and
- Moo \mathbb{R}-Cartier \mathbb{R}-divisor with $A-M$ pseudo-effective. Then

$$
\operatorname{lct}\left(X, B,|M|_{\mathbb{R}}\right) \geqq \operatorname{lct}\left(X, B,|A|_{\mathbb{R}}\right) \geqslant t \text {. }
$$

log canonical thresholds of anti-pluricanonical systems:
Proposition 3.1: Assume Theorem 1.8 in $\operatorname{dim} \leqslant d$. and assume $B A B$ in dimension $\varepsilon^{d t}$. Then, there exists $v=v(d i s)$ satisfying the following. Assume that:

- X Q -factorial $\varepsilon-k_{c}$ Fans variety of dimension,
- X has Picard rank one,
- $0 \leqslant L \sim \mathbb{R}-K_{x}$.
we cannot assume X belongs to 2 bounded family.

Then, each coff of L is less than or equal to V.
Proof: Step 1: We assume that L has a single component
$(X, \Omega) n$-complement of X.
By effective birationality, $1-n k_{x} \mid$ defines a mir map \& vol $(-K x)$ is bounded above.

Step 2: Proposition 4.4. from "Antiphoricanomical" to conclude that (X, Ω) is log birationally bounded.

$$
V \xrightarrow{\square} \rightarrow X .
$$

$(V, \Lambda), \quad \operatorname{supp} \Lambda \supseteq E_{x}(\pi) \cup \pi_{n}^{-1} \Omega$.
$H \leq \Lambda$ for some H very ample.

Step 3: $(X, B) \varepsilon-l_{c}$ \& $k_{x}+B \sim a$.

$$
\begin{aligned}
& W \xrightarrow{\phi} X \quad W \xrightarrow{\psi} V \\
& K_{v}+B_{v}=\psi_{*} \phi^{*}\left(K_{x}+B\right) \\
& K_{v}+\Omega_{v}=\psi_{*} \phi^{*}\left(K_{x}+B\right) .
\end{aligned}
$$

2 component of L
may have $\substack{\text { nogetive } \\ \text { coff }}$
$\left(V, \Omega_{v}\right)$ is sub -k sub- c and $a\left(T, V, \Omega_{v}\right) \leqslant 1$

Note that $\Omega_{v} \leqslant \Delta$, which implies $a(T, V, \Delta) \leqslant 1$

Step 4: D a component of B_{r} which is negative.

$$
\begin{aligned}
& K_{v}+I_{v}=\psi_{x} \phi^{*} K_{x} \\
& I_{v}+\psi_{n} \phi^{*} B=B_{r}
\end{aligned}
$$

It suffices to show $\mu_{D} \Gamma_{v}$ is bounded below.
$K_{v}+\Gamma_{v}=-\psi_{*} \phi^{*} \Omega$, hence $\operatorname{deg}_{H}\left(K_{x}+\Gamma_{v}\right)$
is bounded from below. Thus $\operatorname{deg}_{H}\left(I_{v}\right)$ is bounded. from below.

Step 5: $\begin{aligned} & \text { S: }=\alpha B_{y}+(1-\alpha) \Delta \\ &(V, \Delta) \text { is } \varepsilon^{\prime}-l_{c} \text { where } \quad \varepsilon^{\prime}=\alpha \varepsilon .\end{aligned} \quad\left\{\begin{array}{l}A=l H \\ \text { in Th } 1.8\end{array}\right\}$

$$
a(T, V, \Delta) \leqslant a(T, V, B r) \alpha+\leqslant \alpha+(1-\alpha)=1
$$

$$
a(T, V, \perp I)(1-\alpha)
$$

$\ell H-L I$ is ample for some ℓ
-By $\sim_{\mathbb{R}} K_{y}$ we may assume $\overbrace{l H-B_{y}} \sim_{\mathbb{R}} \overbrace{l H+K_{v}}$ ample $\ell H-\Delta=\alpha\left(l H-B_{v}\right)+(1-\alpha)(l H-\Lambda 1)$ ample \&

$$
(e H)^{d} \leq r
$$

Step 6: Let $M=\psi_{*} \phi^{*} u T$
Since $\Omega \equiv-K_{x} \equiv u T$,
$\operatorname{deg} H M=\operatorname{deg}_{H}\left(\psi_{*} \phi^{*} \Omega\right)$. bounded above
By the and step, the coefficients of M are bounded above
Assume $M_{\text {is }}$ contained in the support $\Lambda \perp$.
Hence $\ell H-M$ ample. $\quad \phi^{*} u T \leqslant \Psi^{*} M$ by neg Lemme.
The coefficients of the birational transform of J in $\Psi^{*} M$ is $3 u$ Therefore, the pair $\left(V, \Delta+\frac{1}{u} M\right)$ is not a kilt pair $h_{2 s}$ a coeff $\geqslant 1$.

Lemma 3.2: Assume $B A B$ in $\operatorname{dim} \leqslant d-1+\operatorname{Thm}$ is in $\operatorname{dim}^{\text {"d }} \mathrm{d}$ \Longrightarrow |ct of antr-phricanorical systems in $d i m \leq d$.

Proof: $(X, B+s L)$ is $\varepsilon^{\prime}-I_{c}$. We want to bounds
away from 0 .

$$
\alpha(T, X, B+s L)=\varepsilon^{\prime} .
$$

$Y \xrightarrow{\phi} X$ be a birational mophism extracting T.

$$
K_{y}+B_{y}=\phi^{*}\left(K_{x}+B\right) \quad L_{y}=\phi^{*} L .
$$

$$
\mu_{T}\left(B_{r}\right) \leqslant 1-\varepsilon, \quad \mu_{T}\left(B_{T}+s L_{T}\right)=1-\varepsilon!
$$

Hence $\mu_{T}\left(s L_{y}\right) \geqslant \varepsilon-\varepsilon^{\prime}$.
Note $-(K x+B+s L) \sim \mathbb{R}(1-s) A$.

Temple oven $z!$

- $\left(K_{r}+B_{r}+s L_{r}\right)$ is nef a big., kill. \qquad T Z
(Run a (-T)-MMP, to get a MFS $Y^{\prime} \longrightarrow Z^{\prime}$. general fiber is $\varepsilon^{\prime}-K_{c}$. of $d_{m} \leqslant d_{-1}$
horizontal $/ Z^{\prime}$ components of $(1-s) L_{x^{\prime}}$ are bounded above.
In particular, $\mu_{T^{\prime}}(1-s) L_{Y^{\prime}}$ is bounded above

$$
\left.\mu_{T^{\prime}}(1-s) L_{\gamma^{\prime}} \geqslant \frac{(1-s)\left(\varepsilon-\varepsilon^{\prime}\right.}{s_{\rightarrow 0}}\right\} \rightarrow-s \rightarrow 0
$$

Now, we just need to analyze what happens when $\operatorname{dim} z^{\prime}=0$

$$
\begin{aligned}
& \rho\left(Y^{\prime}\right)=1 . \quad \text { Now, } \\
& -K_{Y^{\prime}} \sim \mathbb{R} \quad L_{Y^{\prime}}+B_{Y^{\prime}}=(1-s) L_{Y^{\prime}}+s L_{Y^{\prime}}+B_{Y^{\prime}} \geqslant(1-s) L_{Y^{\prime}} \\
& -K_{Y^{\prime}} \sim \mathbb{R}(1-s) L_{Y^{\prime}} \geqslant 0
\end{aligned}
$$

Y^{\prime} is $\varepsilon^{\prime}-k, \quad F_{\text {and }}, \quad \rho\left(Y^{\prime}\right)=1$
By Proposition 3.1, we conclude $\mu_{T^{\prime}}(1-s) L_{Y^{\prime}}$ is bounded from above

Proposition 3.4: "Divisor computing lat" holds whenever $\operatorname{lct}\left(X, B,|A|_{\mathbb{R}}\right)<1$.

Proof: $\quad 0 \leqslant L_{i} \sim_{\mathbb{R}} A=-\left(K_{x}+B\right) . \quad t=\lim t$.
$H_{i} \in|A|_{R}$ so that $\left(X, B+H_{i}\right)$ is k lt
$\left(X, B+t, L_{i}+H_{i}\right)$ is $l_{i-1, i)}$ \& the coeff of H_{1} belongs to some DCC set.
 $T_{i}{ }^{\prime}$

$$
\begin{aligned}
& K_{x_{i}^{\prime}}+B_{i}^{\prime}+T_{i}^{\prime}+t_{1} L_{i}^{\prime}+\left(1-t_{i}\right) H_{i}^{\prime} \sim_{\mathbb{R}} O \longrightarrow \log C y \text { pair. } \\
& K_{x}+B+t_{i} L_{i}+\left(1-t_{i}\right) H_{i} \text { is } \log C y
\end{aligned}
$$

Run a - (K $\left.X_{i_{i}}{ }^{\prime}+T_{i}^{\prime}+B_{i}^{\prime}+(1-t) H_{i}^{\prime}\right)-M M P$. 1 imit -
$X_{i}^{\prime} \rightarrow X_{i}^{\prime \prime}$ be such a MMP.

$$
\begin{gathered}
\left(X_{i}^{\prime \prime}, T_{i}^{\prime \prime}+B_{i}^{\prime \prime}+t_{i} L_{i}^{\prime \prime}+\left(1-t_{i}\right) H_{i}^{\prime \prime}\right) \text { is log canonical } \\
\downarrow \text { By } A C C \text { for lot's } \\
\left(X_{i}^{\prime \prime}, T_{i}^{\prime \prime}+B_{i}^{\prime \prime}+(1-t) H_{i}^{\prime \prime}\right) \text { is } \mathrm{lc.}
\end{gathered}
$$

Claim: This MMP does not terminate with a MFS infinite many tomes.

Proof: $\quad X_{i}^{\prime \prime} \longrightarrow Z_{i}^{\prime \prime}$ a MFS. Hence
$K_{x_{i}}{ }^{\prime \prime}+T_{i}^{\prime \prime}+B_{i}^{\prime \prime}+(1-t) H_{i}^{\prime \prime}$ ample over $Z_{i}^{\prime \prime}$.

$$
\left(\begin{array}{l}
K_{x_{i}^{\prime \prime}}+T_{i}^{\prime \prime}+B_{i}^{\prime \prime}+t_{i} L_{i}^{\prime \prime}-\left(1-t_{i}\right) H_{i}^{\prime \prime} \sim \mathbb{R} \cdot Z_{i}^{\prime \prime} 0 \\
K_{x_{i}}^{\prime \prime}+T_{i}^{\prime \prime}+B_{i}^{\prime \prime}+\left(1-t_{i}\right) H_{i}^{\prime \prime} .2 n t_{i-n e f} \text { over } Z_{i}^{\prime \prime} .
\end{array}\right.
$$

decrease $t .<t_{i}^{\prime \prime}<t_{i}$

$$
K_{x i}^{\prime \prime}+T_{i}^{\prime \prime}+B_{i}^{n}+\left(1-t_{i}^{\prime \prime}\right) H_{i}^{\prime \prime} \sim \mathbb{R}, z_{i}^{\prime \prime} 0
$$

violates ACC.
In the general fiber, we are violating $A C C$ for $\log C Y$ pin.

$$
\begin{array}{cc}
& -\left(K_{x_{i} \prime \prime}+T_{i}^{\prime \prime}+B_{i}^{\prime \prime}+(1-t) H_{i}^{\prime \prime}\right) \text { semiample. } \\
X & 2 \\
\uparrow & P_{i}^{\prime \prime} \geqslant 0 . \\
X_{i}^{\prime} \rightarrow \ldots X_{i}^{\prime \prime} \quad \text { is } \quad-\left(K_{x_{i}}+T_{i}^{\prime}+B_{i}^{\prime}+(1-t) H_{i^{\prime}}^{\prime}\right)-n g .
\end{array}
$$

By neg Lemma,

$$
\begin{aligned}
& -\left(K_{x_{i}^{\prime}}+T_{i}^{\prime}+B_{i}^{\prime}+(1-t) H_{i}^{\prime}\right) \sim P_{i}^{\prime} \geqslant 0 \\
& K_{x_{i}}+B_{i}^{\prime}+T_{i}^{\prime}+(1-t) H_{i}^{\prime}+P_{i}^{\prime} \sim_{\mathbb{R}} 0 . \quad \log C Y \\
& \left(X, B+(1-t) H_{i} \mid+P_{i}\right) \text { not kIt. } \\
& \left(X, B+P_{i}\right) \text { not kIt. }
\end{aligned}
$$

$$
D=\frac{1}{t} P_{i}, \quad D \sim_{\mathbb{R}} A, \quad \underline{\operatorname{lct}(X, B ; D)} \leqslant t
$$

Hence, $\quad \operatorname{lat}(X, B ; D)=t$

Complements near non-kil places:
Theorem 1.9: d\& p natural numbers. There $n:=n(d, p)$.
Assume:

- (X,B) projective k of $\operatorname{dim} d$,
- $M B$ integral, scmiample Cartier on X defining $X \xrightarrow{f} Z$.
- X of Fans type over Z,
- $M-\left(K_{x}+B\right)$ net e big, and
- S is a non-klt place of (X, B) with $M I_{S} \equiv 0$.

Then, there exists a n-complement (X, \perp) of (X, B) over $f(s)$ for which $n\left(K_{x}+\Delta\right) \sim(n+2) M$

